

1	Quasi-weekly oscillation of regional PM _{2.5} transport over
2	China driven by the synoptic-scale disturbance of East
3	Asian Winter Monsoon circulation
4	Yongqing Bai ¹ , Tianliang Zhao ^{2,*} , Kai Meng ^{3,*} , Yue Zhou ¹ , Jie Xiong ¹ , Xiaoyun
5	Sun ⁴ , Lijuan Shen ⁵ , Yanyu Yue ¹ , Yan Zhu ¹ , Weiyang Hu ⁶ , Jingyan Yao ²
6	¹ China Meteorological Administration Basin Heavy Rainfall Key Laboratory/Hubei Key Laboratory
7	for Heavy Rain Monitoring and Warning Research, Institute of Heavy Rain, China Meteorological
8	Administration, Wuhan 430205, China
9	² Climate and Weather Disasters Collaborative Innovation Center, Key Laboratory for
10	Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of
11	Information Science & Technology, Nanjing 210044, China
12	Key Laboratory of Meteorology and Ecological Environment of Hebei Province, Hebei Provincial
13	⁴ A alui Davies Key Laboratory of Aterestaria Sciences, Shijiazhuang, 050021, China
14 15	Annui Province Key Laboratory of Atmospheric Science and Satellite Remote Sensing, Annui Institute
15 16	⁵ School of Atmosphere and Pemote Sensing, Wuyi University, Wuyi 21/105, China
10	⁶ State Key I aboratory of Pollution Control and Resource Reuse and School of the Environment
18	Naniing University Naniing 210023 China
10	Nanjing Oniversity, Nanjing 210025, China
20	Correspondence to: Tianliang Zhao (tlzhao@nuist.edu.cn) and Kai Meng (macka@foxmail.com)
21	Abstract. The regional DM transport is one of the important causes for atmospheric
21	Abstract. The regional PM _{2.5} transport is one of the important causes for atmospheric
22	environment change. However, the variations of regional $\ensuremath{\text{PM}_{2.5}}$ transport in synoptic scale with
23	meteorological drivers have been incomprehensively understood. Therefore, this study is targeted
24	at the quasi-weekly oscillation (QWO) of regional $PM_{2.5}$ transport over central and eastern China
25	(CEC) with the influence of synoptic-scale disturbance of the East Asian Winter Monsoon
26	(EAWM) circulation. By constructing the data of daily $\text{PM}_{2.5}$ transport flux in CEC in the winters
27	of 2015-2019, we utilize the extended empirical orthogonal function (EEOF) decomposition and
28	other statistical methods to extract the moving spatial distribution of regional $\ensuremath{\text{PM}_{2.5}}$ transport over
29	CEC, recognizing the QWO in regional $\ensuremath{\text{PM}_{2.5}}$ transport with the spatial-temporal variations over
30	CEC. The source-acceptor relationship in regional transport of $PM_{2.5}$ is identified with the 2-d lag
31	effect of the North China Plain, as the upwind source region, on the $\ensuremath{\text{PM}_{2.5}}$ pollution change in the
32	Twain-Hu Basin, as the downwind receptor region in central China. The QWO of regional $\mathrm{PM}_{2.5}$
33	transport over CEC is regulated by the synoptic-scale disturbance of the EAWM circulation with
34	the periodic activities of Siberian high. These findings could provide new insight into the

- 35 understanding of regional PM_{2.5} transport with source-receptor relationship and the meteorological
- 36 mechanism in atmospheric environment change.

37

- 38 Key words: regional PM_{2.5} transport, quasi-weekly oscillation, source-receptor relationship,
- 39 extended empirical orthogonal function (EEOF)
- 40

41 1 Introduction

 $PM_{2.5}$ pollution has attracted worldwide attention due to its adverse impact on the 42 43 environment and human health (Agarwal et al., 2017; Fan et al., 2016; Geng et al., 2021; Lin et al., 2018). The PM2.5 pollution in the cold season has become one of the major atmospheric 44 45 environmental problems in China (An et al, 2019; X. Huang et al, 2020). The high-concentration 46 $PM_{2.5}$ tends to occur with extensive spatiotemporal coverage (Tao et al, 2016; Zhang et al, 2019), 47 and synthetic physical-chemical processes caused such heavy PM2.5 pollution events (Ding et al, 48 2017; Quan et al., 2020), including emissions (Liu et al, 2016; Zheng et al, 2018), chemical 49 formation (Huang et al, 2014; Nie et al, 2014), atmospheric boundary layer processes (Huang et al, 50 2018; Zhong et al, 2019), localized circulation (Miao et al, 2015; Shu et al, 2021; Zheng et al, 51 2018), as well as weather and climate (Cai et al, 2017; Wu et al, 2016). The interactions among 52 these physical and chemical processes make it more challenging to comprehend the severe haze 53 formation, which serves as one of the major difficulties in forecasting and controlling atmospheric 54 environment change and heavy air pollution (Zhang et al., 2012; Zhang et al., 2019).

55 PM2.5 is featured with complex spatiotemporal changes on multiscale (Georgoulias and 56 Kourtidis, 2012; Wu et al, 2021). PM_{2.5} oscillates periodically at multi-time scales, and the 57 periodic oscillation of atmospheric circulation is the leading cause of the cyclical variations of 58 $PM_{2.5}$ (Chen et al, 2020; Dong et al, 2021; Fu et al, 2020; Perrone et al, 2018). To be specific, the 59 1-d periodic change or diurnal variation of near-surface PM2.5 concentrations is mainly attributed 60 to the atmospheric boundary layer process and localized circulation (Miao et al, 2019); the periodic change of around 7 days may be controlled by the fluctuation of the long-wave trough in 61 62 middle and high latitudes (Guo et al, 2014); the oscillating cycle of about 14 days is closely related to the quasi-biweekly oscillation of the synoptic circulation (Gao et al, 2020; Zhao et al, 63 2019); and the 30-60-d intra-seasonal oscillation is mainly caused by the impact of monsoon 64

circulation change (Xu et al, 2014; Zhang et al, 2019). Comprehensively revealing the interaction between $PM_{2.5}$ and meteorology at different time scales is essential for solving air pollution problems more effectively (B äumer and Vogel, 2007; Wang et al, 2020). Previous studies mainly focused on the multiscale periodic variation of atmospheric pollutants in a certain region or local area, not yet found on the $PM_{2.5}$ trans-regional and periodic oscillation in the large area of central and eastern China (CEC).

71 East Asian Winter Monsoon (EAWM) is the most active atmospheric circulation system in the cold season over the Northern Hemisphere (Ding et al, 2017; Wu and Wang, 2002), which is 72 73 also a critical leading factor for the variation of wintertime air pollution in CEC (Chin, 2012; Li et al, 2016). Being the major circulation system of EAWM, the Siberian High dominates the cold 74 75 seasons, acting as a particular driver of cold airflows, so having an important impact on the 76 wintertime atmospheric environment in CEC (An et al, 2019; Shen et al, 2021, 2022; Wu et al, 77 2016). The strong cold air coming from the Siberian region can effectively remove the air 78 pollutants for the regional transport over China, and a weak Siberian High with the slow 79 southward advance of the cold air is especially favorable for the southerly transport of air pollutants from polluted northern regions in CEC (Hou et al., 2020; Zhang, et al., 2016). When the 80 81 position of Siberian High is more eastern than normal, the transport of air pollutants from northern 82 China to the south is weakened, and the aggravation of pollution is enhanced in northern China 83 (Jia et al., 2015). Regional pollutant transport driven by the southward movement of a cold front 84 with the Siberian High would exacerbate the air quality in the corresponding receptor regions 85 (Kang et al., 2019; Hu et al., 2021; Shen et al, 2022). The characteristics of atmospheric 86 circulation anomalies favoring heavy haze pollution in China have changed in recent years, and 87 the leading formation mechanism of severe haze has been shifting from local accumulation to 88 regional transport processes in eastern China (Y. Yang et al, 2021). Therefore, studying the 89 influence of EAWM circulation system on regional pollutant transport over CEC is an important 90 issue in atmospheric environment changes (Bai et al, 2021, 2022; Ge et al, 2018; Merrill and Kim, 91 2004; Tan et al, 2021; W. Yang, et al, 2021).

In recent decades, observational studies reveal the frequent haze in CEC corresponding to a
"susceptibility zone" (Xu et al., 2016; Zhu et al, 2018). Anticyclones and cyclones alternatively
affect the region on a time scale of 3-7 days, resulting in periodic air pollution in cities (Guo et al.,

95	2014). Thus, the weather system in the CEC is basically characterized by periodic changes and the
96	cold air in winter with EAWM oscillates in quasi-weekly periods (Wu and Wang, 2002; Wu et al.,
97	2016). However, the influence of the synoptic-scale disturbance of the EAWM on regional $\ensuremath{\text{PM}_{2.5}}$
98	transport over CEC is not yet clear. Responding to this problem, this study aims to reveal from a
99	new perspective the quasi-weekly oscillation (QWO) of regional $PM_{2.5}$ transport over CEC
100	affected by EAWM and its underlying mechanism with the synoptic-scale oscillation of the
101	EAWM circulation. This study could be beneficial to deepen the understanding of regional $\ensuremath{\text{PM}_{2.5}}$
102	transport, its source-receptor relationship and meteorological mechanism in the atmospheric
103	environment changes, and provide scientific evidence for air pollution forecast, early warning and
104	coordinated control.

105

106 2 Data and methods

107 2.1 Environmental and meteorological data

108

The daily dataset of PM_{2.5} concentrations selected for this study was from China National
Environmental Monitoring Center (http://datacenter.mee.gov.cn/), including daily PM_{2.5}
concentrations from 1079 air quality monitoring stations in CEC during the winters
(December-February) of 2015-2019.

113 Meteorological data were selected out of the NCEP/NCAR global reanalysis daily data 114 (https://psl.noaa.gov/data/gridded/tables/daily.html) with a grid resolution of $2.5 \times 2.5 \circ$ for the 115 large-scale circulation analysis. It is composed of the daily sea level pressure (SLP), air 116 temperature at 1000 hPa, and the U- and V-components of wind at 1000 hPa during the winters of 117 2015–2019.

118 In addition. the ERA5-land high-resolution reanalysis hourly dataset (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=form) with spatial 119 resolution of 0.1 °×0.1 ° was selected for the calculation of transport flux (TF) of PM_{2.5} in CEC. 120 121 The U- and V-components of the 10-m wind over CEC were obtained from the observations 4 times a day at 00, 06, 12, and 18 UCT in the winter (December-February) of 2015-2019. In order 122 to match the resolution of PM2.5 daily data, the ERA5-Land high-resolution 10-m wind was 123 124 processed into daily average data.

125

126	2.2 PM _{2.5} TF and its divergence
127	
128	In order to quantitatively characterize the horizontal transport direction and intensity of $PM_{2.5}$
129	as well as convergence or divergence during regional $\text{PM}_{2.5}$ transport, we introduced the concepts
130	of $PM_{2.5}TF$ and divergence of $PM_{2.5}TF.$ Generally, there are two types of TF: horizontal and
131	vertical. This study only addresses the near-surface horizontal $\text{PM}_{2.5}$ TF. The horizontal $\text{PM}_{2.5}$ TF
132	is defined as the $\text{PM}_{2.5}$ mass concentrations passing through the unit area in unit time (unit: $\mu\text{g m}^{\text{-}2}$
133	s ⁻¹), expressed as the product of wind vector and $PM_{2.5}$ concentration (Liu et al., 2019; Ma et al.,
134	2021), and its vector points to the same direction as the horizontal wind. The zonal component (F_{u})
135	and meridional component (F_{ν}) of PM _{2.5} TF vector (TFV) and the magnitude (TFM) are calculated
136	as follows:

$$F_u = C u \tag{1}$$

$$F_{\nu} = C v \tag{2}$$

$$TFV = F_u i + F_v j$$
(3)

$$140 TFM = \sqrt{F_u^2 + F_v^2} (4)$$

where *C* is the surface PM_{2.5} concentration, *u* and *v* are the zonal and meridional components
of the 10-m wind speed, respectively.

143Firstly, the U- and V-components of ERA5-Land high-resolution 10-m wind are interpolated144to 1079 stations of environmental measurements in CEC for calculations of near-surface $PM_{2.5}$ TF145in this study. Then, the daily $PM_{2.5}$ TF of the 1079 stations for the winters from 2015 to 2019 are146calculated according to the calculation by Formulas (1)–(4).

147 The divergence of $PM_{2.5}$ TF can be an indicator for the $PM_{2.5}$ budget. When positive 148 divergence occurs, the air pollutants were net outflow from the domain region, and vice versa 149 (Wang et al., 2021). The divergence of horizontal $PM_{2.5}$ TF near the surface is calculated as 150 follows (Wang et al., 2021):

151
$$D = \frac{\partial F_u}{\partial x} + \frac{\partial F_v}{\partial y}$$
(5)

where *D* is the horizontal $PM_{2.5}$ TF divergence, unit: $\mu g \text{ m}^{-3} \text{ s}^{-1}$. If *D* is positive (negative), it indicates divergence (convergence) of $PM_{2.5}$ TF.

154 In the i and j grids, the expression of Formula (5) for the differential calculation with grid

186

155	spacing to be d is
156	$D = \frac{Fu_{i+1,j} - Fu_{i-1,j} + Fv_{i,j+1} - Fv_{i,j-1}}{2d} $ (6)
157	When calculating the horizontal divergence of transport $\text{PM}_{2.5}$ flux, it is necessary to
158	interpolate the station data of zonal and meridional components (F_u , F_v) of PM _{2.5} TFV to grid
159	points with 0.25×0.25 grid spacing in CEC and then calculate the divergence of $PM_{2.5}\ TF$ at each
160	grid point according to Formula (6).
161 162 163	2.3 Butterworth filter
164	The Butterworth filter is a signal-processing filter to smooth and monotonically reduce the
165	amplitude when the frequency increases without oscillations (Yang et al., 2024). It can extract the
166	changes of variables at different time scales, and thus has been widely applied in climate and
167	meteorology analyses (Gouirand et al., 2012; Yang et al., 2024). In this study, to investigate the
168	QWO (8-d) of regional $\text{PM}_{2.5}$ transport over CEC with the influence of EAWM circulations in the
169	synoptic scale, the Butterworth band-pass filtering is performed on the daily $\text{PM}_{2.5}\ \text{TFM}$
170	anomalies and the daily SLP anomalies in the winters of 2015-2019 at quasi-weekly (6-9 days)
171	synoptic-scale component.
172 173 174	2.4 Extended empirical orthogonal function (EEOF)
175	The Empirical Orthogonal Function (EOF) analysis is a widely-applied climate statistical
176	method in atmospheric and oceanographic scientific studies (Kim et al., 2015; Li et al., 2019;
177	Schepanski et al., 2016), also used to investigate the variability of atmospheric aerosols at
178	different spatiotemporal scales (Bai et al., 2022; Feng et al., 2020). The mathematical process of
179	EOF analysis is to decompose the variable field $X_{m \times n}$, which consists of observation at <i>n</i> times at
180	m spatial points, into a linear combination of p spatial eigenvectors (modes) with corresponding
181	time-weighting coefficients:
182 183	$X_{m \times n} = V_{m \times p} T_{p \times n} \tag{7}$
184	where V is the spatial eigenvector (load) and T represents the time coefficient. The main
185	information of variable field $X_{m \times n}$ is represented by several eigenvectors. Since the method has

been maturely applied, the detailed calculation steps of EOF decomposition are omitted here, and

- 187 our focus is on how to construct the observation matrix.
- 188 Firstly, we decompose the daily $PM_{2.5}$ TFM anomalies of 1079 stations in CEC during the
- 189 winters of 2015-2019 by EOF method. Thus, the following observation matrix can be obtained:

190
$$X = \begin{bmatrix} x_{11} \cdots x_{1n} \\ \vdots \\ x_{m1} \cdots x_{mn} \end{bmatrix}$$
(8)

where X represents the PM_{2.5} TFM anomalies, m represents the spatial points for 1079
stations, and n represents the observation times of 450 days. Then, the variable field X is
decomposed into the sum of the product of space and time functions according to Formula (7).
EOF decomposition of PM_{2.5} TFV anomalies can be performed by employing the complex

195 matrix, hence the following observation matrix is constructed:

196
$$X = \begin{bmatrix} u_{11} \cdots u_{1n} \\ \vdots \\ u_{m1} \cdots u_{mn} \\ v_{11} \cdots v_{1n} \\ \vdots \\ v_{m1} \cdots v_{mn} \end{bmatrix}$$
(9)

where X is the $PM_{2.5}$ TFV anomalies, and u and v refer to the zonal and meridional components of TFV anomalies.

With EOF analysis we can get the spatial distribution structure, which is in a fixed time pattern of climate variables, but we cannot get a temporally moving spatial distribution structure. By using the autocorrelation existing in the time of variable and selecting lag time, the extended EOF (EEOF) analysis is an EOF-based method designed for extending the original observation matrix into multiple extended matrices over continuous times to obtain moving spatial distribution structure of variable. This method has found widespread applications in the analysis and prediction of marine and atmospheric motions (Dey et al., 2018; Qian et al., 2019; H. Wang et al., 2019).

In this study, we utilized the EEOF analysis to reveal the evolution of $PM_{2.5}$ TF to reveal the spatiotemporal variations of regional $PM_{2.5}$ transport. On the basis of Formula (8), a new extension matrix of $PM_{2.5}$ TFM is constructed. Due to the study on the synoptic scale, 5 lag times are selected, and each lag time is 1 day in length. The constructed observation matrix is as follows:

$$X = \begin{cases} x_{1,1} \cdots x_{1,n-5} \\ \vdots \\ x_{m,1} \cdots x_{m,n-5} \\ x_{1,2} \cdots x_{1,n-4} \\ \vdots \\ x_{m,2} \cdots x_{m,n-4} \\ x_{1,3} \cdots x_{1,n-3} \\ \vdots \\ x_{m,3} \cdots x_{m,n-3} \\ x_{1,4} \cdots x_{1,n-2} \\ \vdots \\ x_{m,4} \cdots x_{m,n-2} \\ x_{1,5} \cdots x_{1,n-1} \\ \vdots \\ x_{m,5} \cdots x_{m,n-1} \\ x_{1,6} \cdots x_{1,n} \\ \vdots \\ x_{m,6} \cdots x_{m,n} \end{cases}$$

210

(10)

Seen from Formula (10), the new extended matrix is composed of $X_{6m,n-5}$, where X is the 211 $PM_{2.5}$ TFM anomalies, m is the spatial points of observation station, and n is the observation times 212 of 450 days. When EEOF decomposition is performed on PM2.5 TFV, the complex matrix is still 213 used for the extension, and the same lag scheme is adopted to construct a new extended matrix of 214 PM2.5 TFV based on Formula (9). After constructing the initial data matrix, the EEOF 215 decomposition method is in line with the classical EOF decomposition method. 216 217 **3 Results and discussion** 218 219 220 3.1 QWO of regional PM2.5 transport over CEC 221 The EOF decomposition is carried out on the daily anomalies of PM2.5 TFM and TFV in the 222 winters of 2015-2019 over CEC. The first two EOFs explain 26.6% and 14.2% (29.1% and 11.8%) 223 of the total anomalous variations of PM2.5 TFM (TFV), which is very helpful for better 224 225 characterizing regional PM2.5 transport variations.

- 227 mode of monopole (EOF1) and the second mode of meridional dipole (EOF2) (Fig. 1). EOF1 228 indicates the enhanced PM2.5 TF over CEC (Fig. 1a). The large value center of TF mainly occurs 229 in central China, and the transport vector direction is abnormally by north. The horizontal PM2.5 230 transport is unusually strong in central China affected by the EAWM, presenting a typical channel 231 for regional PM_{2.5} transport over CEC (Yang W. et al., 2021). The dipole mode of PM_{2.5} TF anomalies displays a south-north out-of-phase pattern, with the flux large value centers located in 232 the North China Plain (NCP) and the Twain-Hu Basin (THB) respectively, and the vector 233 directions are opposite (Fig. 1b). This mode indicates that the air pollutants from NCP in the 234 235 upwind are transported to THB in the downwind driven by the prevailing northerlies of EAWM (Hu et al., 2021; Shen et al., 2022), and the PM2.5 flux in NCP decreases while that in THB 236 237 increases in the regional PM2.5 transport process.
- 238

Figure 1. Spatial pattern of the (a) EOF1 and (b) EOF2 loads in the daily change of PM_{2.5} TFV anomalies (vectors)
and TFM anomalies (color contours) over CEC in the winters of 2015-2019. The red and blue boxes indicate NCP
and THB, respectively.

243

239

Through EOF decomposition, the $PM_{2.5}$ TF could be understood from the perspective of a fixed time pattern of climate, but the spatial structure with $PM_{2.5}$ TF over CEC failed to be obtained. However, EEOF decomposition can be used to analyze the continuous structural evolution of the main modes of regional $PM_{2.5}$ TF over CEC.

The EEOF decomposition was carried out for the daily variations of PM_{2.5} TFM anomalies
 and TFV anomalies respectively over CEC during the winters of 2015-2019. Figure 2 and Figure

- S1 show the spatial distribution of different lag times for the main modes of EEOFs, which account for about 20% of the total variation. According to the analysis, the $PM_{2.5}$ TFM anomalies for EEOF2 and EEOF3, as well as TFV anomalies for EEOF1 and EEOF2, all show the structural evolutions in the different phases of regional $PM_{2.5}$ transport in one cycle. As it can be seen, Figures. 2a-d, S1a-d, and 2e-h respectively describe the evolution of the first and second four phases in a cycle and the first four phases in the next cycle (one phase represents 1day).
- 256 Figures 2a-d illustrate the positive anomalies of PM2.5 TF shifting from NCP to THB in the 257 first four phases under the effect of the EAWM, causing the upwind PM2.5 TF to decrease and the 258 downwind PM_{2.5} TF to increase, which is in line with the spatial pattern of the EOF modes in Figure 1. The last four phases show the out-of-phase pattern of the first half cycle (Figs. S1a-d). It 259 260 is noted that when anomalies of PM2.5 TFV in the NCP turn to the northerly direction (Fig. S1d 261 and Fig. 2e), it is a strong signal initiating the regional $PM_{2.5}$ transport. Then, the transport is repeated in the next periodic cycle (Figs. 2e-h). Therefore, the regional PM2.5 transport over CEC 262 263 enjoys a quasi-weekly (8-d) oscillation pattern.
- 264

Figure 2. (a)-(d) The first four phases (days) of QWO (8-d) during the regional PM_{2.5} transport over CEC; (e)-(h)
the first four phases (days) of the next cycle. The Loads of PM_{2.5} TFM anomalies (color contours) for EEOF2 and
TFV anomalies (vectors) for EEOF1 with lag time (a) 0 d, (b)1 d, (c) 2 d and (d) 3 d, and loads of TFM anomalies
(color contours) for EEOF3 and TFV anomalies (vectors) for EEOF2 with lag time (e) 2 d, (f) 3 d, (j) 4 d and (h) 5
d over CEC in the winters of 2015-2019.

271	
272	To further study the variations of regional $PM_{2.5}$ transport over CEC, we have screened out
273	23 typical events with greater than 1.5 times standard deviations based on the standardized time
274	coefficient of EEOF, and then used the 8 consecutive days of each event as the 8 phases of QWO
275	in the composite analysis on the 23 typical events of regional $PM_{2.5}$ transport over CEC.
276	Figure 3 shows the composited $PM_{2.5}$ TF, divergence of $PM_{2.5}$ TF, and $PM_{2.5}$ concentration
277	anomalies in the first four phases of QWO. The high fluxes of $PM_{2.5}$ transport from north to south
278	persists for 3-4 days over CEC and decline in the THB (Fig. 3a-d). The regional $PM_{2.5}$ transport
279	lifetime corresponding to synoptic systems is about 3-5 days (H. Huang et al., 2020). Abnormal
280	northerly winds drive the heavy $PM_{2.5}$ pollution from the upwind NCP to the downwind regions,
281	aggravating $PM_{2.5}$ pollution in the downwind THB (Figs. 3e-h). It is noteworthy that the regions
282	$PM_{2.5}$ TF convergence zone (negative value of divergence) matches spatially the centers positive
283	anomaly centers of $\mathrm{PM}_{2.5}$ concentrations, which is confirmed with a significantly negative
284	correlation of the $PM_{2.5}$ concentrations with divergences of $PM_{2.5}$ TF in the 23 typical events (Fig.
285	S2). The $PM_{2.5}$ transport is accompanied by flux convergence, which is beneficial to the $PM_{2.5}$
286	accumulation. In addition, the $\text{PM}_{2.5}\ \text{TF}$ in the upwind NCP changes from convergence to
287	divergence, and the divergence of the $PM_{2.5}$ TF in the downwind THB alters to convergence in the
288	meantime (Figs. 3i-l), indicating that the $PM_{2.5}$ over THB is transported from the upwind NCP.
289	The source-receptor relationship between NCP and THB during the regional PM _{2.5} transport over
290	CEC is discussed in detail in the next section.

291

11

Figure 3. Spatial distributions of the composited (a-d) PM_{2.5} TFM (color contours, unit: µg m⁻² s⁻¹) and TFV
(vectors, unit: µg m⁻² s⁻¹), (e-h) anomalies of PM_{2.5} concentrations (color contours, unit: µg m⁻³) and 10-m wind
vectors (unit: m s⁻¹), (i-l) divergence of PM_{2.5} flux (color contours, unit: 10⁻³µg m⁻³ s⁻¹) in the first four phases of
QWO during the 23 typical events of regional PM_{2.5} transport over CEC.

297

 $298 \qquad 3.2 \ \text{Source-receptor relationship in regional PM}_{2.5} \ \text{transport from NCP to THB}$

299

The regional pollutant transport governed by emissions and meteorology leads to a complex 300 301 source-receptor relationship of air pollution changes (Yu et al., 2020). Band-pass filtering is 302 performed on the daily PM_{2.5} TFM anomalies at a quasi-weekly (6-9 days) synoptic scale in the 303 winters of 2015-2019. In Figure 4a, we composite the filter components of $PM_{2.5}$ TFM in the 8 304 phases of QWO during the 23 typical events of regional PM2.5 transport over the NCP and THB, 305 respectively. The PM2.5 TF exhibits an obvious QWO on the synoptic scale (Fig. 4a). The PM2.5 306 TF over the NCP continues to decline in the first four phases, while that of THB first rises and then falls in the last four phases, the PM2.5 TF over the NCP increases continuously, while that of 307

308 THB falls first and then rises. We can see that the QWO of $PM_{2.5}$ TF over THB lags behind the NCP by 2 phases (Fig. 4a). The high TFM of PM_{2.5} from NCP in the first phase spread to THB, 309 resulting in the peak of PM2.5 TF over THB in the third phase. 310 In addition, the distribution of the differences in PM2.5 TF and the vectors between phase 3 311 312 and phase 1 of the QWO, and the $PM_{2.5}$ TF decrease and increase from phase 1 to phase 3 respectively over the upwind NCP and the downwind THB, which is in accordance with the 313 314 spatial pattern of the EOF mode (Figs.1b and 4b), indicating that the source-receptor relationship over CEC exist the regions NCP and THB of regional PM2.5 transport over CEC. 315

316

Figure 4. (a) The 8 phases of QWO during the 23 typical events of regional $PM_{2.5}$ transport over the NCP and THB with composited 6-9 d band-pass filtering of $PM_{2.5}$ TFM; (b) spatial distribution of the differences in $PM_{2.5}$

320 TFM (color contours, unit: $\mu g m^{-2} s^{-1}$) and TFV (vectors, unit: $\mu g m^{-2} s^{-1}$) between the 3rd phase and the 1st phase

321 of QWO. The red and black boxes represent NCP and THB.

322

323 The statistical analysis based on long-term observation also shows that there is a significant 324 2-day lag relationship of positive correlation between NCP and THB in PM2.5 TF in the QWO (Fig. 5a). This discloses that the air pollutants are transported from the upwind NCP to the downwind 325 326 THB in 2 days, confirming a quasi-2-d lag in the regional $PM_{2.5}$ transport from NCP to THB (Hu et al., 2021; Shen et al., 2021). Additionally, in the long-term change of air pollution, the 327 divergences of PM2.5 TF in the NCP are significantly negatively correlated to that of THB (Fig. 328 329 5b), that is, the PM2.5 TF convergences in the downwind THB fits well with the PM2.5 TF divergence in the upwind NCP. It can be reflected that the changes in the synoptic scale of EAWM 330 atmospheric circulation impel the regional PM25 transport to build the source-receptor relationship 331 of atmospheric pollutants between the NCP and THB. 332

Figure 5. (a) Scatter plot of 6-9-d filtering components of PM_{2.5} TFM (10⁻³ µg m⁻² s⁻¹) over THB in 2-day lag and
NCP during the winters of 2015-2019; (b) scatter plot of PM_{2.5} TF divergences (10⁻³ µg m⁻³ s⁻¹) between THB and
NCP, and the PM_{2.5} TF divergences are averaged over the value interval of 0.1.

338

334

3.3 Effect of synoptic-scale disturbance of EAWM circulation on QWO of regional PM_{2.5} transport
 over CEC

341

Meteorological change is the essential factor in regulating the occurrence and development of PM_{2.5} pollution on synoptic scales. To investigate the QWO of EAWM circulation in the synoptic scale disturbance, this study performs the 6-9-d band-pass filtering of the daily SLP anomalies (denoted as SLP_{QWO}) in East Asia during the winters of 2015-2019. The SLP and SLP_{QWO} fields (Figs. 6-7) as well as PM_{2.5} concentrations and 10-m winds (Fig. S3) in the 8 phases of QWO

- 347 during the 23 typical events were composited, respectively. The QWO of regional PM_{2.5} transport
- 348 is connected with the "weekly-cycle" synoptic process of $PM_{2.5}$ transport and accumulation over
- 349 CEC (Fig. S3), and it is powered mainly by the Siberian High circulation with the synoptic-scale
- disturbance of EAWM circulation (Figs. 6 and 7).

Figure 6. The composited differences between the current day and the previous day of SLP (black contour lines,
unit: hPa), 1000 hPa air temperature (color contours, unit: °C) and wind vectors (unit: m s⁻¹) in the first four
phases (a-d) of QWO during the 23 typical events.

356

357 The condition of uniform pressure in the front of Siberian High could favor the PM25 accumulation over the NCP for triggering regional PM2.5 transport over CEC (Fig. 7a). The 358 regional heavy pollution of $PM_{2.5}$ >150 µg m⁻³ lasts for 1-2 days (Figs. S3a and S3b). With the 359 360 development of the Siberian High, the extension of the high pressure guides the cold air to 361 advance southward (Park et al., 2014). As the result of the increasing air pressure gradients, the strong northerly winds in the EAWM circulation system, deliver high-level PM2.5 air mass from 362 NCP to THB (Figs. 7a-d, Figs. S3a-d). In addition, the cold and high air pressure system with the 363 364 abnormal northerly airflows moves from the Siberia-Mongolia region to CEC in the first four 365 phases (Fig. 6), providing beneficial synoptic circulation patterns for regional PM25 transport. 366 Thus, the periodic extension of the Siberian High with the associated strong cold air intrusion is an 367 important driver in the regional PM2.5 transport over CEC.

368 Notably, we can see that in the first four phases, the SLP_{OWO} positive anomalies occur, develop, and expand southward from the Siberia-Mongolia region to CEC (Figs. 7a-d). The 369 370 synoptic-scale disturbance with the extension of Siberian High and the southward movement of 371 cold air could drive the regional PM2.5 transport over CEC (Figs. 7a-d). The situation of the last 372 four phases is opposite to the SLP_{OWO} negative anomalies in Siberia-Mongolia region, inhibiting 373 the Siberian High and cold air intrusion (Figs. 7e-h). The low and uniform pressure is beneficial to 374 the accumulation of PM2.5. Therefore, the periodic changes in the synoptic-scale disturbance of the EAWM circulation impel the QWO of regional PM2.5 transport over CEC. 375 376

380 Figure 7. Composited SLP (black contour lines, unit: hPa) and its synoptic-scale filter component SLP_{QWO} (color

- 381 contours, unit: hPa) in the 8 phases (a-h) of QWO during the 23 typical events. Coor represents the spatial
- 382 correlation coefficients between SLP_{OWO} and the load of SLP_{OWO} decomposed by EEOF in Fig. S4.
- 383

384 In addition, the EEOF decomposition is carried out on the SLP_{OWO} field in the winters of 2015-2019 to recognize the periodic activities in the synoptic scale of the EAWM circulation. The 385 cold air activity of EAWM presents QWO (Wu and Wang, 2002). The positive (negative) 386 387 synoptic-scale disturbance occurs in the Siberia-Mongolia region, and then spreads to CEC along the northwest-southeast path, contributing to the 8-d cycle of QWO (Fig. S4). Notably, the spatial 388 389 correlation coefficients between the load of SLP_{OWO} decomposed by EEOF (Fig. S4) and the SLP_{OWO} composited during 23 typical events (Fig.7) are highly positively correlated in the 8 390 391 phases, respectively. Therefore, the QWO in the synoptic-scale activities of the Siberian high is an 392 important factor for driving the QWO of regional PM2.5 transport over CEC.

393

394 4 Conclusions

395 Exploring the periodical oscillations of PM2.5 pollution over CEC and the meteorological 396 effect is crucial for understanding the change in the atmospheric environment and improving 397 regional air quality forecasts. In this study with constructing a dataset of the daily PM_{2.5} TF, the 398 EEOF and statistical methods are used to identify the QWO of regional $PM_{2.5}$ transport with the 399 spatiotemporal variations over CEC in winters from 2015 to 2019. The source-receptor 400 relationship is recognized between NCP and THB with the QWO of regional $PM_{2.5}$ transport over 401 CEC with the typical EAWM climate. Furthermore, it is revealed that the driving effect of 402 synoptic-scale disturbance of EAWM circulations on the QWO of regional PM2.5 transport over 403 China.

The variations of $PM_{2.5}$ TF over CEC are dominated by the first leading monopole mode and the second meridional dipole mode. The monopole mode indicates the high $PM_{2.5}$ flux along the channel of regional $PM_{2.5}$ transport from NCP to THB under the governs of the EAWM circulations, and the dipole mode exhibits a pattern of south-north out-phase with two centers existing respectively in the upwind NCP and the downwind THB in regional transport of $PM_{2.5}$ over CEC. In terms of the long-term changes in air pollution of 2015–2019, the regional $PM_{2.5}$ transport over CEC is featured with the QWO, verifying a source-receptor relationship for the

- 411 regional PM_{2.5} transport from NCP to THB in 2 days. Such changes are incurred by the QWO in 412 the activities of the Siberian High, and this synoptic-scale disturbance of the EAWM circulations is generated in the Siberia-Mongolia region, and then develops, marching into CEC, regulating the 413 414 QWO of regional PM_{2.5} transport. 415 Based on the 5-winter (2015-2019) observations of PM2.5 concentrations and the 416 corresponding meteorological reanalysis data, this study with the climate statistical and diagnostic 417 methods investigates the QWO of regional PM2.5 transport in China with the influence of synoptic-scale disturbance of EAWM circulation, providing a new insight into the understanding 418 of regional pollutant transport with meteorological drivers in atmospheric environment changes. 419 Further studies with the fine observations of air pollutants and meteorology in the longer term 420 421 could explore variations in regional transport of particles and gaseous precursors with their 422 contribution to PM_{2.5} pollution through the artificial intelligence integrating physical and chemical 423 process analysis.
- 424
- 425 Data availability. All data used in this paper can be provided upon request from Yongqing Bai
 426 (2007byq@163.com)
- 427 Author contributions. YB and TZ conceived the study. YB designed the graphics and wrote the
- 428 manuscript with help from TZ, KM, YZ, JX, XS, LS, YY, YZ, WH and JY were involved in the
- 429 scientific discussion. All authors commented on the paper.
- 430 *Competing interests.* The authors declare that they have no conflict of interest.
- *Financial support.* This research was supported by the National Natural Science Foundation of
 China (grant no. 42075186, 41830965) and the National Key Research and Development Program
- 433 of China (2022YFC3701204).

434 References

435	Agarwal, N. K., Sharma, P., Agarwal, S. K., 2017. Particulate matter air pollution and cardiovascular disease, Med.
436	Sci. 21, 270–279.
437	An, Z., Huang, R., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., Ji, Y., 2019. Severe haze
438	in northern China: A synergy of anthropogenic emissions and atmospheric processes. Proceedings of the
439	National Academy of Sciences of the United States of America 116, 8657-8666.

440	Bai, Y., Zhao, T., Zhou, Y., Kong, S., Hu, W., Xiong, J., Liu, L., Zheng, H., Meng, K., 2021. Aggravation effect of
441	regional transport on wintertime PM2.5 over the middle reaches of the Yangtze River under China's air pollutant
442	emission reduction process. Atmospheric Pollution Research 12, 101111.
443	Bai, Y., Zhao, T., Hu, W., Zhou, Y., Xiong, J., Wang, Y., Liu, L., Shen, L., Kong, S., Meng, K., Zheng, H., 2022.
444	Meteorological mechanism of regional PM2.5 transport building a receptor region for heavy air pollution over
445	Central China. Sci. Total Environ. 808, 151951.
446	B äumer, D., Vogel, B., 2007. An unexpected pattern of distinct weekly periodicities in climatological variables in
447	Germany. Geophysical Research Letters 34, L03819.
448	Cai, W., Li, K., Liao, H., Wang, H., Wu, L., 2017. Weather conditions conducive to Beijing severe haze more
449	frequent under climate change. Nat. Clim. Chang. 7, 257–262.
450	Chen, X., Yin, L., Fan Y., Song, L., Ji, T., Liu, Y., Tian, J., Zheng, W., 2020. Temporal evolution characteristics of
451	PM _{2.5} concentration based on continuous wavelet transform, Science of the Total Environment 699, 134244.
452	Chin M., 2012. Dirtier air from a weaker monsoon. Nat. Geosci. 5, 449-450.
453	Dey, A., Chattopadhyay, R., Sahai, A. K., Mandal, R., Joseph, S., Phani, R., Abhilash, S., 2018. An operational
454	tracking method for the MJO using extended empirical orthogonal functions, Pure. Appl. Geophys. 176, 2697-
455	2717.
456	Ding, A., Huang, X., Fu, C., 2017. Air Pollution and Weather Interaction in East Asia, Oxford Research
457	Encyclopedia, 10.1093/acrefore/9780199389414.013.536.
458	Dong, Y., Zhou, H., Fu, Y., Li, X., Geng, H., 2021. Wavelet periodic and compositional characteristics of
459	atmospheric PM2.5 in a typical air pollution event at Jinzhong city, China, Atmospheric Pollution Research 12,
460	245–254.
461	Fan, J., Wang, Y., Rosenfeld, D., Liu, X., 2016. Review of aerosol-cloud interactions: Mechanisms, significance,
462	and challenges. J. Atmos. Sci. 73, 4221-4252.
463	Feng, J., Zhu, J., Li, J., Liao, H., 2020. Aerosol concentrations variability over China: two distinct leading modes.
464	Atmos. Chem. Phys., 20, 9883–9893.
465	Fu, H., Zhang, Y., Liao C., Mao, L., Wang, Z., Hong, N., 2020. Investigating $PM_{2.5}$ responses to other air
466	pollutants and meteorological factors across multiple temporal scales, Sci. Rep. 10, 15639.
467	Gao, L., Wang, T., Ren X., Zhuang, B., Li, Shu., Yao, R., Yang, X., 2020. Impact of atmospheric quasi-biweekly
468	oscillation on the persistent heavy $PM_{2.5}$ pollution over Beijing-Tianjin-Hebei region, China during winter,
469	Atmospheric Research 242, 105017.
470	Ge, B., Wang, Z., Lin, W., Xu, X., Li, J., Ji, D., Ma, Z., 2018. Air pollution over the North China Plain and its
471	implication of regional transport: A new sight from the observed evidences, Environmental Pollution 234, 29-
472	38.
473	Geng, G., Zheng, Y., Zhang Q., Xue, T., Zhao, H., Tong, D., Zheng, B., Li, M., Liu, F., Hong, C., He, K., Davis, S.
474	J., 2021. Drivers of PM _{2.5} air pollution deaths in China 2002–2017, Nature Geoscience 14, 645–650.
475	Georgoulias, A. K., Kourtidis, K. A., 2012. A high resolution satellite view of the aerosol weekly cycle variability
476	over Central Europe. Atmospheric Research 107, 145–160.
477	Gouirand, I., Jury, M.R., Sing, B., 2012. An analysis of low- and high-frequency summer climate variability
478	around the Caribbean Antilles. J. Climate 25, 3942–3952.
479	Guo, S., Hu, M., Zamora, M. L., Peng, J., Zhang, R., 2014. Elucidating severe urban haze formation in China. Proc.
480	Natl. Acad. Sci. USA. 111, 17373–17378.
481	Hou, X., Zhu, B., Kumar, K. R., de Leeuw, G., Lu, W., Huang, Q., Zhu, X., 2020. Establishment of conceptual
482	schemas of surface synoptic meteorological situations affecting fine particulate pollution across eastern China

483 in the winter. Journal of Geophysical Research: Atmospheres 125, e2020JD033153.

484	Hu, W., Zhao, T., Bai, Y., Kong, S., Xiong, J., Sun, X., Yang, Q., Gu, Y., Lu, H., 2021. Importance of regional
485	PM2.5 transport and precipitation washout in heavy air pollution in the Twain-Hu Basin over Central China:
486	Observational analysis and WRF-Chem simulation. Sci. Total. Environ. 758, 143710.
487	Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Daellenbach. K. R., Slowik, J. G., Platt, S. M.,
488	Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E., A., Crippa, M., Ciarelli, G., Piazzalunga, A.,
489	Schwikowski. M., Abbaszade, G., Kreis, J. S., Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., Haddad,
490	I. E., Prevot, A. S. H., 2014. High secondary aerosol contribution to particulate pollution during haze events in
491	China. Nature 514, 218–222.
492	Huang, X., Wang, Z., Ding, A., 2018. Impact of aerosol-PBL interaction on haze pollution: Multiyear
493	observational evidences in North China. Geophys. Res. Lett. 45, 8596-8603.
494	Huang, H., Wang, S., Huang, W., Lin, N., Chuang, M., Silva, A. M., Peng. C., 2020. Influence of
495	synoptic-dynamic meteorology on the long-range transport of Indochin biomass burning aerosols. Journal of
496	Geophysical Research: Atmospheres 125, e2019JD031260.
497	Huang, X., Ding, A., Wang, Z., Ding, K., Gao, J., Chai, F., Fu, C., 2020. Amplified transboundary transport of haze
498	by aerosol-boundary layer interaction in china. Nature Geoscience 13, 428-434.
499	Jia, B., Wang, Y., Yao, Y., Xie, Y., 2015. A new indicator on the impact of large-scale circulation on wintertime
500	particulate matter pollution over China. Atmos. Chem. Phys. 15, 11919–11929.
501	Kang, H., Zhu, B., Gao, J., He, Y., Wang, H., Su, J., Pan. C., Zhu, T., Yu, B., 2019. Potential impacts of cold frontal
502	passage on air quality over the Yangtze River Delta, China. Atmos. Chem. Phys. 19, 3673–3685.
503	Kim, B. H., Ha, K, J., 2015. Observed changes of global and western Pacific precipitation associated with global
504	warming SST mode and mega-ENSO SST mode. Clim. Dynam. 45, 3067–3075.
505	Li, Q., Zhang, R., Wang, Y., 2016. Interannual variation of the wintertime fog-haze days across central and eastern
506	China and its relation with EAWM. Int. J. Climatol. 36, 346-354.
507	Li, X., Gereon, G., Greatbatch, R. J., Lu, R., 2019. Impact of the MJO on the interannual variation of the Pacific-
508	Japan mode of the East Asian summer monsoon. Clim. Dynam. 52, 3489-3501.
509	Lin, Y., Zou, J., Yang, W., and Li, C. Q., 2018. A Review of Recent Advances in Research on PM _{2.5} in China, Int.,
510	J., Env., Res., Pub., He. 15, 438.
511	Liu, J., Mauzerall, D. L., Chen, Q., Zhang, Q., Song, Y, Peng, W., Klimont. Z., Qiu, X., Zhang, S., Hu, M., Lin, W.,
512	Smith, K. R., Zhu, T., 2016. Air pollutant emissions from Chinese households: A major and underappreciated
513	ambient pollution sources. P. Natl. Acad. Sci. USA. 113, 7756-7761.
514	Liu, Y., Tang, G., Zhou, L., Hu, B., Liu, B., Li, Y., Liu, S., Wang, Y., 2019. Mixing layer transport flux of
515	particulate matter in Beijing, China. Atmos. Chem. Phys. 19, 9531–9540.
516	Ma, Y., Zhu, Y., Liu, B., Li, H., Jin, S., Zhang, Y., Fan, R., Gong, W. 2021. Estimation of the vertical distribution of
517	particle matter (PM2.5) concentration and its transport flux from lidar measurements based on machine learning
518	algorithms. Atmos. Chem. Phys. 21, 17003–17016.
519	Merrill, J. T., Kim, J., 2004. Meteorological events and transport patterns in ACE-Asia. Journal of Geophysical
520	Research Atmospheres 109, D19S18.
521	Miao, Y., Hu, X.M., Liu, S., Qian, T., Xue, M., Zheng, Y., Wang, S., 2015. Seasonal variation of local atmospheric
522	circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality. J.
523	Adv. Model. Earth Sys. 7, 1602–1626.
524	Miao, Y., Li, J., Miao, S., Che, H., Wang, Y., Zhang, X., Zhu, R., Liu, S., 2019. Interaction between planetary
525	boundary layer and PM _{2.5} pollution in megacities in China: a review. Curr. Pollut. Rep. 5, 261–271.
526	Nie, W., Ding, A., Wang, T., Kerminen, V. M., George, C., Xue, L., Wang, W., Zhang, Q., Pet ij ä, T., Qi, X., Gao,
527	X., Wang, X., Yang, X., Fu, C., Kulmala, M., 2014. Polluted dust promotes new particle formation and growth.

528	Scientific Reports 4, 6634.
529	Park, T. W., Ho, C. H. Deng, Y., 2014. A synoptic and dynamical characterization of wave-train and blocking cold
530	surge over East Asia, Climate Dynamics 43, 753–770.
531	Perrone, M. R., Vecchi, R., Romano, S., Becagli, S., Traversi, R., Paladini, F., 2018. Weekly cycle assessment of
532	PM mass concentrations and sources, and impacts on temperature and wind speed in Southern Italy.
533	Atmospheric Research 218, 129–144.
534	Qian, Y., Hsu, P. C., Kazuyoshi, K., 2019. New real-time indices for the quasi-biweekly oscillation over the Asian
535	summer monsoon region. Climate Dynamics 53, 2603-2624.
536	Quan, J., Xu, X., Jia, X., Liu, S., Miao, S., Xin, J., Hu, F., Wang, Z., Fan, S., Zhang, H., Mu, Y., Dou, Y., Cheng, Z.,
537	2020. Multi-scale processes in severe haze events in China and their interactions with aerosols: Mechanisms
538	and progresses. Chin. Sci. Bull. 65, 810-824.
539	Schepanski, K., Mallet, M., Heinold, B., Ulrich, M., 2016. North African dust transport toward the western
540	Mediterranean basin: Atmospheric controls on dust source activation and transport pathways during during
541	June–July 2013. Atmos. Chem. Phys. 16, 14147–14168.
542	Shen, L., Hu, W., Zhao, T., Bai, Y., Wang, H., Kong, S., Zhu, Y., 2021. Changes in the Distribution Pattern of PM _{2.5}
543	Pollution over Central China. Remote. Sens. 13, 4855.
544	Shen, L., Zhao, T., Liu, J., Wang, H., Bai, Y., Kong, S., Shu, Z., 2022. Regional transport patterns for heavy PM _{2.5}
545	pollution driven by strong cold airflows in Twain-Hu Basin, Central China. Atmospheric Environment 269,
546	118847.
547	Shu, Z., Liu, Y., Zhao, T., Xia, J., Wang, C., Cao, L., Wang, H., Zhang, L., Zheng, Y., Shen, L., Luo, L., Li, Y.,
548	2021. Elevated 3D structures of $PM_{2.5}$ and impact of complex terrain-forcing circulations on heavy haze
549	pollution over Sichuan Basin, China. Atmos. Chem. Phys. 21, 9253-9268.
550	Tan, Q., Ge, B., Xu, X., Gan, L., Yang, W., Chen, X., Pan, X., Wang, W., Li, J., Wang, Z., 2021. Increasing impacts
551	of the relative contributions of regional transport on air pollution in Beijing: Observational evidence,
552	Environmental Pollution 292, 118407.
553	Tao, M., Chen, L., Li, R., Wang, L., Wang, J., Wang, Z., Tang, G., Tao, J., 2016. Spatial oscillation of the particle
554	pollution in eastern China during winter: Implications for regional air quality and climate. Atmospheric
555	Environment, 144, 100–110.
556	Wang, H., Kumar, A., Murtugudde, R., Narapusetty, B., Seip, K. L., 2019. Covariations between the Indian Ocean
557	dipole and ENSO: a modeling study. Climate Dynamics 53, 5743-5761.
558	Wang, J., Lu, X., Yan, Y., Zhou, L., Ma, W., 2020. Spatiotemporal characteristics of PM _{2.5} concentration in the
559	Yangtze River Delta urban agglomeration, China on the application of big data and wavelet analysis. Science
560	of the Total Environment 724, 138134.
561	Wang, X., Zhang, R., Tan, Y., Yu, W., 2021. Dominant synoptic patterns associated with the decay process of PM _{2.5}
562	pollution episodes around Beijing. Atmos. Chem. Phys. 21, 2491–2508.
563	Wu, B., Wang, J., 2002. Winter Arctic oscillation, Siberian High and EAWM, Geophys. Res. Lett. 29, 1897.
564	Wu, G., Li, Z., Fu, C., Zhang, X., Huang, R., 2016. Advances in studying interactions between aerosols and
565	monsoon in China. Sci. China. Earth. Sci. 59, 1–16.
566	Wu, X., He, S., Guo, J., Sun, W., 2021. A multi-scale periodic study of PM _{2.5} concentration in the Yangtze River
567	Delta of China based on Empirical Mode Decomposition-Wavelet Analysis, China. Journal of Cleaner
568	Production 281, 124853.
569	Xu, C., Ma, Y., Panday, A., Cong, Z., Yang, K., Zhu, Z., Wang, J., Amatya, P. M., Zhao, L., 2014. Similarities and
570	differences of aerosol optical properties between southern and northern sides of the Himalayas. Atmos. Chem.

Phys. 14, 3133–3149.

572	Xu, X., Zhao, T., Liu, F., Gong, S. L., Kristovich, D., Lu, C., Guo, Y., Cheng, X., Wang, Y., and Ding, G., 2016
573	Climate modulation of the Tibetan Plateau on haze in China. Atmos. Chem. Phys., 16, 1365-1375.
574	Yang, Q., Zhao, T., Bai, Y., Wei, J., Sun, X., Tian, Z., Hu, J., Ma, X., Luo, Y., Fu, W., Yang, K., 2024. Interannual
575	variations in ozone pollution with a dipole structure over Eastern China associated with springtime thermal
576	forcing over the Tibetan Plateau. Science of The Total Environment, 923, 171527.
577	Yang, W., Li. J., Wang, Z., Wang. L., Dao, X., Zhu. L., Pan, X., Li. Y., Sun, Y., Ma. S., Wang, W., Chen. X., Wu, J.,
578	2021. Source apportionment of PM225 in the most polluted Central Plains Economic Region in China:
579	Implications for joint prevention and control of atmospheric pollution, Journal of Cleaner Production 283,
580	124557.
581	Yang, Y., Zhou, Y., Li, K., Wang, H., Ren, L., Zeng, L., Li, H., Wang, P., Li, B., Liao, H., 2021. Atmospheric
582	circulation patterns conducive to severe haze in eastern China have shifted under climate change. Geophysical
583	Research Letters 48, e2021GL095011.
584	Yu, C., Zhao, T., Bai, Y., Zhang, L., Kong, S., Yu, X., He, J., Cui, C., Yang, J., You, Y., Ma, G., Wu, M., Chang, J.,
585	2020. Heavy air pollution with a unique "non-stagnant" atmospheric boundary layer in the Yangtze River
586	middle basin aggravated by regional transport of PM _{2.5} over China. Atmos. Chem. Phys. 20, 7217–7230.
587	Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., Liu, W., Ding, Y., Lei, Y.,
588	Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C., Li, M., Liu, F.,
589	Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, K., and Hao, J., 2019.
590	Drivers of improved PM _{2.5} air quality in China from 2013 to 2017, P. Natl. Acad. Sci. USA. 116, 24463–24469.
591	Zhang, X., Wang, Y., Niu, T., Zhang, X., Gong, S., Zhang, Y., Sun, J., 2012. Atmospheric aerosol compositions in
592	China: Spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global
593	aerosols. Atmos Chem Phys 12, 779–799.
615	Zhang, X., Xu, X., Ding, Y., Liu, Y., Zhang, H., Wang, Y., Zhong, J., 2019. The impact of meteorological changes
616	from 2013 to 2017 on $PM_{2.5}$ mass reduction in key regions in China. Science China Earth Sciences 62, 1885–
617	1902.
618	Zhang, Y., Ding, A., Mao, H., Nie, W., Zhou, D., Liu, L., Huang, X., Fu, C., 2016. Impact of synoptic weather
619	patterns and inter-decadal climate variability on air quality in the North China Plain during 1980-2013.
620	Atmospheric Environment, 124, 119–128.
621	Zhao, S., Feng, T., Tie, X., Dai, W., Zhou, J., Long, X., Li, G., Cao, J., 2019. Short-term weather patterns modulate
622	air quality in eastern China during 2015-2016 winter. Journal of Geophysical Research: Atmospheres 124,
623	986–1002.
624	Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao,
625	H., Zheng, Y., He, K., Zhang, Q., 2018. Trends in China's anthropogenic emissions since 2010 as the
626	consequence of clean air actions. Atmos. Chem. Phys., 18, 14095-14111.
627	Zheng, Z., Ren, G., Wang, H., Dou, J., Gao, Z., Duan, C., Li, Y., Ngarukiyimana, J. P., Zhao, C., Cao, C., Jiang, M.,
628	Yang, Y., 2018. Relationship between fine-particle pollution and the urban heat island in Beijing, China:
629	observational evidence. Bound-Lay. Meteorol. 169, 93-113.
630	Zhong, J., Zhang, X., Dong, Y., Wang, Y., Liu, C., Wang, J., Zhang, Y., Che, H., 2019. Feedback effects of
631	boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution
632	episodes in Beijing from 2013 to 2016. Atmos. Chem. Phys. 18, 247-258.
633	Zhu, W., Xu. X., Zheng, J., Yan. P., Wang, Y., Cai. W., 2018. The characteristics of abnormal wintertime pollution
634	events in the Jing-Jin-Ji region and its relationships with meteorological factors. Science of the Total
635	Environment 626, 887–898.